c3s magic wps Documentation Release 1.0.0 **The C3S Magic Partners** ## Contents | 1 | Installation | 3 | |---|---------------|---| | 2 | Configuration | 7 | | 3 | Processes | 9 | This is the documentation for the Web Processing Services for Climate Data Analysis developed in the MAGIC project. Contents 1 2 Contents # CHAPTER 1 ### Installation - Install from PyPI - Install from GitHub - Configure c3s magic wps PyWPS service - Start c3s magic wps PyWPS service - Run c3s magic wps as Docker container - Use Ansible to deploy c3s magic wps on your System ### 1.1 Install from PyPI The MAGIC WPS is available as a package in *PyPI* < https://pypi.org/> (c3s-magic-wps). A working installation of ESMValTool is required, currently version 2.0a2 is supported. ### 1.2 Install from GitHub Note: These installation instructions assume you have Anaconda installed. Note: these installtion instructions assume you have Julia installed Check out code from the c3s magic wps GitHub repo and create a conda environment: ``` $ git clone https://github.com/c3s-magic/c3s-magic-wps.git $ cd c3s-magic-wps $ conda env create -f environment.yml $ source activate c3s_magic_wps ``` Note: the environment will pull pywps from github via pip, ESMValTool is installed using conda Next, to complete the installation of ESMValTool a R and Julia script are required. These are available in the package. Please adjust to match the installation location of conda on your system ``` $ Rscript /opt/conda/envs/c3s-magic-wps/lib/python3.6/site-packages/esmvaltool/ install/R/setup.R $ julia /opt/conda/envs/c3s-magic-wps/lib/python3.6/site-packages/esmvaltool/install/ Julia/setup.jl ``` #### Finally install the WPS: ``` $ cd ../c3s-magic-wps $ python setup.py develop ``` ### 1.3 Configure c3s magic wps PyWPS service The wps can be configured using the pywps configuration files. See the etc folder for examples. Create a file called .custom.cfg to customize settings for your installation. A path to the cmip and obs files is needed to run the metrics. See the *Installation* section for more info ### 1.4 Start c3s magic wps PyWPS service After successful installation you can start the service using the c3s_magic_wps command-line. An additional environment variable is needed with the location of the model data. ``` $ export CMIP_DATA_ROOT=/path/to/cmip/files $ c3s_magic_wps --help # show help $ c3s_magic_wps start # start service with default configuration OR $ c3s_magic_wps start --daemon # start service as daemon loading configuration forked process id: 42 ``` Note: Remember the process ID (PID) so you can stop the service with kill PID. The deployed WPS service is by default available on: http://localhost:5000/wps?service=WPS&version=1.0.0&request=GetCapabilities You can find which process uses a given port using the following command (here for port 5000): ``` $ netstat -nlp | grep :5000 ``` #### Check the log files for errors: ``` $ tail -f pywps.log ``` ### 1.5 Run c3s magic wps as Docker container Note: These installation instructions assume you have Docker installed. You can also choose to run c3s magic wps from a Docker container. Download c3s-magic-wps, build the docker container and run it using docker-compose: ``` $ git clone https://github.com/c3s-magic/c3s-magic-wps.git $ cd c3s-magic-wps $ docker-compose build $ docker-compose up ``` By default the WPS service should be available on port 5000: http://localhost:5000/wps?service=wps&request=GetCapabilities Run docker exec to watch logs: ``` $ docker ps # find container name container_name $ docker exec container_name tail -f /opt/wps/pywps.log ``` Use docker-compose to stop the containers: ``` $ docker-compose down ``` ### 1.6 Use Ansible to deploy c3s magic wps on your System Use the Ansible playbook for PyWPS to deploy c3s magic wps on your system. # CHAPTER 2 Configuration ### 2.1 Command-line options You can overwrite the default PyWPS configuration by using command-line options. See the c3s magic wps help which options are available: ``` $ c3s_magic_wps start --help --hostname HOSTNAME hostname in PyWPS configuration. --port PORT port in PyWPS configuration. ``` Start service with different hostname and port: ``` $ c3s_magic_wps start --hostname localhost --port 5001 ``` ### 2.2 Use a custom configuration file You can overwrite the default PyWPS configuration by providing your own PyWPS configuration file (just modifiy the options you want to change). Use one of the existing sample-*.cfg files as example and copy them to etc/custom.cfg. For example change the hostname (demo.org) and logging level: ``` $ cd c3s_magic_wps $ vim etc/custom.cfg $ cat etc/custom.cfg [server] url = http://demo.org:5000/wps outputurl = http://demo.org:5000/outputs [logging] level = DEBUG ``` (continues on next page) (continued from previous page) ``` [data] archive_root =/cmip5 obs_root = /obs ``` Start the service with your custom configuration: ``` # start the service with this configuration $ c3s_magic_wps start -c etc/custom.cfg ``` # CHAPTER 3 **Processes** - Data Availability - Metrics ### 3.1 Data Availability A special *Meta* process in the Magic WPS is available to automatically determine the available cmip5 model data by reading the available files from the data folder. As CMIP5 data is structured according to the DRS this can be done automatically. The format used to pass this information is the json output of the linux tree command. If configured correctly, the WPS processes will automatically find the data ``` tree -J -l -d -L 8 /group_workspaces/jasmin2/cp4cds1/data/c3s-cmip5 ``` #### 3.2 Metrics This is a list of metrics available as processes in the MAGIC WPS. The list of Models, Experiments, and Ensembles is created automatically when the server is started, and shown as "None" here. ``` class c3s_magic_wps.processes.Blocking Bases: pywps.app.Process.Process ``` blocking Blocking metrics and indices (v1.0.0) Calculate Blocking metrics that shows the mid-latitude 1D and 2D blocking indices. The estimated calculation time of this process is 2 minutes for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - **experiment** ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. - ref_dataset ({ 'ERA-Interim'}) Choose a reference dataset like ERA-Interim. - start_reference ({ 'None'}) Start year of reference period. Valid minimum value is 1979. - end_reference ({ 'None '}) End year of reference period. Valid maximum value is 2018. - season ({'DJF', 'MAM', 'JJA', 'SON', 'ALL'}) Choose a season like DJF. #### Returns - tm90_plot (image/png) Generated TM90 plot of ESMValTool processing. - numberevents_plot (image/png) Generated NumberEvents plot of ESMValTool processing. - durationevents_plot (image/png) Generated DurationEvents plot of ESMValTool processing. - **longblockevents_plot** (*image/png*) Generated LongBlockEvents plot of ESMValTool processing. - blockevents_plot (image/png) Generated BlockEvents plot of ESMValTool processing. - acn_plot (image/png) Generated ACN plot of ESMValTool processing. - cn_plot (image/png) Generated CN plot of ESMValTool processing. - **bi_plot** (*image/png*) Generated BI plot of ESMValTool processing. - **mgi_plot** (*image/png*) Generated MGI plot of ESMValTool processing. - **z500_plot** (*image/png*) Generated Z500 plot of ESMValTool processing. - extrablock_plot (image/png) Generated ExtraBlock plot of ESMValTool processing. - instblock plot (image/png) Generated InstBlock plot of ESMValTool processing. - data_full (application/x-netcdf) Generated output data of ESMValTool processing. - data_clim (application/x-netcdf) Generated output data of ESMValTool processing. - archive (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. - ESMValTool - Documentation get_outputs (result, subdir, response) class c3s_magic_wps.processes.CVDP Bases: pywps.app.Process.Process cvdp NCAR CVDPackage (v1.0.0) The Climate Variability Diagnostics Package (CVDP) developed by NCAR's Climate Analysis Section is an analysis tool that documents the major modes of climate variability in models and observations, including ENSO, Pacific Decadal Oscillation, Atlantic Multi-decadal Oscillation, Northern and Southern Annular Modes, North Atlantic Oscillation, Pacific North and South American teleconnection patterns. The estimated calculation time of this process is 15 minutes for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. #### Returns - tas_trend_ann_plot (image/png) Annual trend in surface air temperature. - sst_trend_ann_plot (image/png) Annual trend in sea surface temperature. - psl_trend_ann_plot (image/png) Annual trend in sea level pressure. - pr_trend_ann_plot (image/png) Annual trend in precipitation. - archive (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool
recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. #### References - ESMValTool - Documentation ``` get_outputs (result, response) ``` ``` class c3s_magic_wps.processes.CapacityFactor Bases: pywps.app.Process.Process ``` capacity_factor Capacity factor of wind power (v1.0.0) The goal of this diagnostic is to compute the wind capacity factor, taking as input the daily instantaneous surface wind speed, which is then extrapolated to obtain the wind speed at a height of 100 m as described in Lledo (2017). The estimated calculation time of this process is 1 minute for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - **experiment** ({ 'None'}) Choose an experiment - ensemble ({'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. - start_longitude ({'None'}) Minimum longitude. Range usually from -180 to 180. - end_longitude ({ 'None'}) Maximum longitude. Range usually from -180 to 180. - start_latitude ({ 'None'}) Minimum latitude. Valid range from -90 to 90. - end_latitude ({ 'None'}) Maximum latitude. Valid range from -90 to 90. - season({'DJF', 'MAM', 'JJA', 'SON'})-Season #### Returns - plot (image/png) Ratio of average estimated power to theoretical maximum power. - data (application/zip) Ratio of average estimated power to theoretical maximum power. - **archive** (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. #### References - ESMValTool - Documentation get_outputs (result, response) ``` class c3s_magic_wps.processes.CombinedIndices Bases: pywps.app.Process.Process ``` combined_indices Single and multi-model indices based on area averages (v1.0.0) Metric showning single and multi model indices based on area averages. The estimated calculation time of this process is 1 minute for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - **experiment** ({ 'None '}) Choose an experiment - ensemble ({'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. - running_mean ({ 'None'}) Length of the window for which the running mean is computed. - moninf ({'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', . .}) First month of the seasonal mean period to be computed, if null the monthly anomalies will be computed. - monsup ({'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', . .}) Last month of the seasonal mean period to be computed, if null the monthly anomalies will be computed. - region ({'NAO', 'Nino3', 'Nino3.4', 'Nino4', 'SOI'}) Region over which to calculate the metric. - **standardized** (boolean) Boolean indictating if standardization should be computed. #### Returns - plot (image/png) Combined Indices plot. - data (application/x-netcdf) Generated combined indices data. - **archive** (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. #### References - ESMValTool - Documentation get_outputs (result, response) ``` class c3s_magic_wps.processes.ConsecDryDays Bases: pywps.app.Process.Process ``` consecdrydays Consecutive Dry Days (v1.0.0) Calculates the longest period of consecutive dry days (days with at least 'prlim' mm/day) in the provided time series, as well as the number of periods of at least 'frlim' consecutive dry days. 'prlim' and 'frlim' are provided by the user. The estimated calculation time of this process is 30 seconds for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - start_year ({ 'None'}) Start year of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. - frlim ({'2.5', '5', '10'}) The shortest number of consecutive dry days for entering statistic on frequency of dry periods. - plim ({'0.5', '1', '2'}) Limit for a day to be considered dry [mm/day]. #### Returns - **dryfreq_plot** (*image/png*) Generated dryfreq plot of ESMValTool processing. - **drymax_plot** (*image/png*) Generated drymax plot of ESMValTool processing. - data_drymax (application/x-netcdf) Generated output data of ESMValTool processing. - data_dryfreq (application/x-netcdf) Generated output data of ESMValTool processing. - **archive** (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug log** (text/plain) Debug Log File of ESMValTool processing. #### References - ESMValTool - Documentation get_outputs (result, response) ``` class c3s_magic_wps.processes.DiurnalTemperatureIndex Bases: pywps.app.Process.Process ``` diurnal_temperature_index Diurnal Temperature Variation (DTR) Indicator (v1.0.0) Metric showing the diurnal temperature indicator to estimate energy demand. The estimated calculation time of this process is 6 minutes for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - **experiment** ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - **start_historical** ({ 'None'}) Start historical year of model data. Valid minimum value is 1850. - end_historical ({ 'None'}) End historical year of model data. Valid maximum value is 2005. - start_projection({ 'None'}) Start projection year of model data. Valid minimum value is 2006. - end_projection ({ 'None'}) End projection year of model data. Valid maximum value is 2100. - start_longitude ({ 'None'}) Minimum longitude. Range usually from -180 to 180. - end_longitude ({ 'None'}) Maximum longitude. Range usually from -180 to 180. - **start_latitude** ({ 'None'}) Minimum latitude. Valid range from -90 to 90. - end_latitude ({ 'None'}) Maximum latitude. Valid range from -90 to 90. #### Returns - **plot** (*image/png*) The diurnal temperature indicator to estimate energy demand. - data (application/zip) The diurnal temperature indicator data. - **archive** (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug log** (text/plain) Debug Log File of ESMValTool processing. #### References - ESMValTool - Documentation get outputs (result, response) class c3s_magic_wps.processes.DroughtIndicator Bases: pywps.app.Process.Process drought_indicator Drought indicator (v1.0.0) The drought indicator calculates diagnostics for meteorological drought. The estimated calculation time of this process is 45 minutes for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - ref dataset ({ 'ERA-Interim' }) Choose a reference dataset like ERA-Interim. - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1979 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2018 in case of rcp experiments. #### Returns - spi_plot (image/png) Generated spi histogram plot. - **spei_plot** (*image/png*) Generated SPEI Histogram plot. - **spi_model** (application/x-netcdf) The complete SPI Data for the model. - **spi_reference** (application/x-netcdf) The complete SPI Data for the reference model. - **spei_model** (application/x-netcdf) The complete SPEI Data for the model. - **spei_reference** (application/x-netcdf) The complete SPEI Data for the reference model. - archive (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. #### References - ESMValTool - Documentation get_outputs (result, response) ``` class c3s_magic_wps.processes.EnsClus Bases: pywps.app.Process.Process ``` ensclus EnsClus - Ensemble Clustering (v1.0.0) Cluster analysis tool based on the k-means algorithm for ensembles of climate model simulations. EnsClus group ensemble members according to similar characteristics and select the most representative member for each cluster. The estimated calculation time of this process is 4 minutes for the default values supplied. The
Ensemble Clustering metric requires at least two models to be chosen, choosing more models is supported. #### **Parameters** • model ({ 'None'}) - Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. - **variable** ({ 'pr', 'tas'}) Select the variable to simulate. - season ({ 'DJF', 'DJFM', 'NDJFM', 'JJA'}) Choose a season like DJF. - area ({ 'EU', 'EAT', 'PNA', 'NH'}) Area over which to calculate. - extreme ({'60th_percentile', '75th_percentile', '90th_percentile', 'mean', 'maximum', 'std', 'trend'}) Extreme metric. - numclus ({ 'None'}) Number of clusters. - perc ({ 'None'}) Percentage of total Variance - numpcs ({ 'None'}) Number of PCs to retain. Has priority over Percentage unless set to 0 #### Returns - plot (image/eps) Generated output plot of ESMValTool processing. - **ens_extreme** (application/x-netcdf) Generated output data of ESMValTool processing. - ens_climatologies (application/x-netcdf) Generated output data of ESMValTool processing. - ens_anomalies (application/x-netcdf) Generated output data of ESMValTool processing. - statistics (text/plain) Clustering Statistics - **archive** (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. #### References - ESMValTool - Documentation get_outputs (result, response) ``` class c3s_magic_wps.processes.ExtremeIndex Bases: pywps.app.Process.Process ``` extreme_index Combined Climate Extreme Index (v1.0.0) Metric showing extreme indices relevant to the insurance industry (heat, cold, wind, flood and drought indices). The estimated calculation time of this process is 2 minutes for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - **experiment** ({ 'None'}) Choose an experiment - ensemble ({'None'}) Choose an ensemble - **start_historical** ({ 'None'}) Start historical year of model data. Valid minimum value is 1850. - end_historical ({'None'}) End historical year of model data. Valid maximum value is 2005. - **start_projection** ({ 'None'}) Start projection year of model data. Valid minimum value is 2006. - end_projection ({ 'None'}) End projection year of model data. Valid maximum value is 2100. - running_mean ({ 'None'}) Length of the window for which the running mean is computed. - start_longitude ({'None'}) Minimum longitude. Range usually from -180 to 180. - end_longitude ({ 'None '}) Maximum longitude. Range usually from -180 to 180. - start_latitude ({ 'None'}) Minimum latitude. Valid range from -90 to 90. - end_latitude ({ 'None'}) Maximum latitude. Valid range from -90 to 90. #### Returns - t10p_plot (image/png) Generated t10p plot of ESMValTool processing. - t90p_plot (image/png) Generated t90p plot of ESMValTool processing. - wx_plot (image/png) Generated Wx plot of ESMValTool processing. - rx5day_plot (image/png) Generated rx5day plot of ESMValTool processing. - **cdd_plot** (*image/png*) Generated cdd plot of ESMValTool processing. - **combined_plot** (*image/png*) Generated combined plot of ESMValTool processing. - **t10p_data** (application/x-netcdf) Generated output t10p data of ESMValTool processing.. - **t90p_data** (application/x-netcdf) Generated output t90p data of ESMValTool processing.. - wx_data (application/x-netcdf) Generated output Wx data of ESMValTool processing.. - **rx5day_data** (application/x-netcdf) Generated output rx5day data of ESMVal-Tool processing.. - **cdd_data** (application/x-netcdf) Generated output cdd data of ESMValTool processing.. - **combined_data** (application/x-netcdf) Generated output combined data of ES-MValTool processing.. - archive (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. - ESMValTool - Documentation get_outputs (result, constraints, response) ``` class c3s_magic_wps.processes.HeatwavesColdwaves Bases: pywps.app.Process.Process ``` heatwaves_coldwaves Heatwave and coldwave duration (v1.0.0) Metric showing the duration of heatwaves and coldwaves, to help understand potential changes in energy demand. The estimated calculation time of this process is 4 minutes for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - **experiment** ({ 'None'}) Choose an experiment - ensemble ({'None'}) Choose an ensemble - start_historical ({ 'None'}) Start historical year of model data. Valid minimum value is 1850. - end_historical ({'None'}) End historical year of model data. Valid maximum value is 2005. - **start_projection** ({ 'None'}) Start projection year of model data. Valid minimum value is 2006. - end_projection ({ 'None'}) End projection year of model data. Valid maximum value is 2100. - quantile ({'None'}) Quantile defining the exceedance/non-exceedance threshold. - min_duration ({ 'None'}) Minimum duration in days of a heatwave/coldwave event. - **operator** ({'exceedances', 'non-exceedances'}) Exceedance/non-exceedance of historic threshold. - **season** ({ 'summer', 'winter'}) Choose a season. #### Returns - plot (image/png) Generated extreme spell duration tasmin plot. - data (application/zip) Extreme spell duration tasmin data. - **archive** (application/zip) The complete output of the ESMValTool processing as an zip archive. - success (string) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. - ESMValTool - Documentation get_outputs (result, constraints, response) ``` class c3s_magic_wps.processes.HyInt Bases: pywps.app.Process.Process ``` **hyint** HyInt - Hydroclimatic intensity and extremes (v1.0.0) HyInt hydroclimatic indices calculation and plotting. The estimated calculation time of this process is 30 minutes for the default values supplied. Selected models should be experiment (eg. "rcp85") and not historical. The historical data will be added automatically. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. - ref_model ({ 'ACCESS1-0'}) Choose a reference model like ACCESS1-0. - indices ({'pa_norm', 'hyint', 'int_norm', 'r95_norm', 'wsl_norm', 'dsl_norm', 'int', 'dsl', 'wsl'}) Indices to be analysed and plotted. - regions ({'GL', 'GL60', 'TR', 'SA', 'AF', 'IN', 'EU', 'EA', 'AU'}) Regions for timeseries and maps. - norm_year_start ({ 'None'}) First year of reference normalization period to be used for normalized indices. Must be inside of model data year range. - norm_year_end ({ 'None'}) Last year of reference normalization period to be used for normalized indices. Must be inside of model data year range. #### Returns - plot1 (image/png) Single panel lon/lat map per individual index, multi-year mean - plot2 (image/png) 3-panel lon/lat maps per individual index with comparison to reference dataset, multi-year mean - **plot3** (*image/png*) multipanel of indices of lon/lat maps with comparison to reference dataset, multi-year mean - plot12 (image/png) multipanel of indices with timeseries over multiple regions - plot13 (image/png) multipanel of indices with timeseries for multiple models - **plot14** (*image/png*) multipanel of indices with summary of trend coefficients over multiple regions - plot15 (image/png) multipanel of indices with summary of trend coefficients for multiple models - archive (application/zip) The complete output of the ESMValTool processing as a zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. - ESMValTool - Documentation get_outputs (models, result, response) ``` class c3s_magic_wps.processes.ModesVariability Bases: pywps.app.Process.Process ``` ``` modes_of_variability Modes of variability (v1.0.0) ``` Diagnostics showing the RMSE between the observed and modelled patterns of variability obtained through classification and their relative bias (percentage) in the frequency of occurrence and the persistence of each mode. The estimated calculation time of this process is 30 seconds for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({'None'}) Choose an ensemble - **start_historical** ({ 'None'}) Start historical of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_historical ({ 'None'}) End historical of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. - **start_projection** ({ 'None'})
Start projection of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_projection ({ 'None'}) End projection of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. - plot_type ({ 'polar', 'rectangular'}) Plot type. - ncenters ({'3', '4', '5'}) Choose a number of cluster centers. - detrend_order({'2', '1'})-Choose a order of detrend. - cluster_method({'kmeans', 'hclust'}) Choose a clustering method. - eofs ({'True', 'False'}) Calculate EOFs? - frequency ({'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', ...}) Choose a frequency like JAN. #### Returns - table_psl_plot (image/png) Generated Table_psl plot of ESMValTool processing. - **psl_predicted_regimes_plot** (*image/png*) Generated psl_predicted_regimes plot of ESMValTool processing. - **psl_observed_regimes_plot** (*image/png*) Generated psl_observed_regimes plot of ES-MValTool processing. - rmse (application/x-netcdf) Generated output data of ESMValTool processing. - exp (application/x-netcdf) Generated output data of ESMValTool processing. - **obs** (application/x-netcdf) Generated output data of ESMValTool processing. - **archive** (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. #### References - ESMValTool - Documentation get_outputs (result, response) class c3s_magic_wps.processes.MultimodelProducts Bases: pywps.app.Process.Process multimodel_products Generic multi-model products (v1.0.0) For the 'generic multi-model diagnostic' the ensemble mean anomaly, and the ensemble variance and agreement are calculated. The results are shown as maps and time series. The estimated calculation time of this process is 1 minute for the default values supplied. For each model choose a projection scenario (e.g. rcp26) and the relevant historical experiment will be added by the WPS process. Also make sure to set the climatology and anomaly start and end years correctly. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - start_historical ({ 'None'}) Start historical year of model data. Valid minimum value is 1850. - end_historical ({'None'}) End historical year of model data. Valid maximum value is 2005. - start_projection ({ 'None'}) Start projection year of model data. Valid minimum value is 2006. - end_projection ({ 'None'}) End projection year of model data. Valid maximum value is 2100. - moninf ({'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', . . }) First month of the seasonal mean period to be computed, if none the monthly anomalies will be computed. - monsup ({'1', '2', '3', '4', '5', '6', '7', '8', '9', '10', . .}) Last month of the seasonal mean period to be computed, if none the monthly anomalies will be computed. - agreement_threshold ({ 'None'}) Threshold in percent for the minimum agreement between models on the sign of the multi-model mean anomaly for the stipling to be plotted. - running_mean ({ 'None'}) Length of the window for which the running mean is computed. - time_series_plot ({ 'single', 'maxmin'}) Either single or maxmin (plot the individual or the mean with shading between the max and min). #### Returns - tas_plot (image/png) Generated tas plot of ESMValTool processing. - area_plot (image/png) Generated Area plot of ESMValTool processing. - data (application/x-netcdf) Generated output data of ESMValTool processing. - archive (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. #### References - ESMValTool - Documentation get_outputs (result, response) class c3s_magic_wps.processes.PreprocessExample Bases: pywps.app.Process.Process **preproc** Preprocessing Demo (v1.0.0) The ESMValTool climate data pre-processor can be used to perform all types of climate data pre-processing needed before indices or diagnostics can be calculated. It is a base component for many other diagnostics and metrics shown on this portal. It can be applied to tailor the climate model data to the need of the user for its own calculations. The estimated calculation time of this process is 1 minute for the default values supplied. This preprocessor example requires at least two models to be chosen. Any combination is valid, however, only the first two models will return their output inline. The output of any models beyond the first two are included in the zip file. A reference observational dataset will also be added. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - ref_dataset ({ 'ERA-Interim'}) Choose a reference dataset like ERA-Interim. - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1979 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2018 in case of rcp experiments. - extract_levels ({ 'None'}) Choose an extraction level for the preprocessor. #### Returns - multi_model_mean_ta_plot (image/png) Generated multi_model_mean_ta plot of ESMValTool processing. - multi_model_median_ta_plot (image/png) Generated multi_model_median_ta plot of ESMValTool processing. - model1_mean_ta_plot (image/png) Generated model1_mean_ta plot of ESMValTool processing. - model2_mean_ta_plot (image/png) Generated model2_mean_ta plot of ESMValTool processing. - **reference_model_mean_ta_plot** (*image/png*) Generated reference_model_mean_ta plot of ESMValTool processing. - model1_mean_pr_plot (image/png) Generated model1_mean_pr plot of ESMValTool processing. - model2_mean_pr_plot (image/png) Generated model2_mean_pr plot of ESMValTool processing. - **reference_model_mean_pr_plot** (*image/png*) Generated reference_model_mean_pr plot of ESMValTool processing. - multi_model_mean_ta_data (application/x-netcdf) Generated output multi_model_mean_ta data of ESMValTool processing.. - multi_model_median_ta_data (application/x-netcdf) Generated output multi_model_median_ta data of ESMValTool processing.. - model1_mean_ta_data (application/x-netcdf) Generated output model1_mean_ta data of ESMValTool processing.. - model2_mean_ta_data (application/x-netcdf) Generated output model2_mean_ta data of ESMValTool processing.. - reference_model_mean_ta_data (application/x-netcdf) Generated output reference_model_mean_ta data of ESMValTool processing.. - **modell_mean_pr_data** (application/x-netcdf) Generated output modell_mean_pr data of ESMValTool processing.. - model2_mean_pr_data (application/x-netcdf) Generated output model2_mean_pr data of ESMValTool processing.. - reference_model_mean_pr_data (application/x-netcdf) Generated output reference_model_mean_pr data of ESMValTool processing.. - archive (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. - ESMValTool - Documentation get_outputs (result, constraints, response) ``` class c3s_magic_wps.processes.QuantileBias ``` Bases: pywps.app.Process.Process quantile_bias Quantile Bias (v1.0.0) Diagnostic showing the quantile bias between models and a reference dataset. The estimated calculation time of this process is 1 minute for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1979 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2018 in case of rcp experiments. - ref_dataset ({ 'GPCP-SG'}) Choose a reference dataset like GPCP-SG. - perc_lev ({ 'None '}) Quantile in percentage (%). #### Returns - $\bullet \ \ model \ (\textit{application/x-netcdf}) Generated \ output \ data \ of \ ESMValTool \ processing.$ - archive (application/zip) The complete output of the ESMValTool processing as a zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. • **debug_log** (text/plain) – Debug Log File of ESMValTool processing. #### References - ESMValTool - Documentation get_outputs (model, result, response) ``` class c3s_magic_wps.processes.RainFARM Bases: pywps.app.Process.Process ``` rainfarm RainFARM stochastic downscaling (v1.0.0) Precipitation extremes and small-scale variability are essential drivers in many climate change impact studies. However, the spatial resolution currently achieved by global and regional climate models is still insufficient to correctly identify the fine structure of precipitation intensity fields. In the absence of a proper physically based representation, this scale gap can be at least temporarily bridged by adopting a stochastic rainfall downscaling technique (Rebora et al, 2006). With this aim, the Rainfall
Filtered Autoregressive Model (RainFARM)was developed to apply the stochastic precipitation downscaling method to climate models. The selected region needs to have equal and even number of longitude (in any case it is cut) and latitude grid points (e.g., 2x2, 4x4). Warning: downscaling can reach very high resolution, so select a limited area. Note that only the first two ensemble members are returned as data fields. If applicable, others are available in the output archive. The estimated calculation time of this process is 3 minutes for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. - start_longitude ({ 'None'}) Minimum longitude. Range usually from -180 to 180. - end_longitude ({ 'None'}) Maximum longitude. Range usually from -180 to 180. - start_latitude ({ 'None'}) Minimum latitude. Valid range from -90 to 90. - end_latitude ({ 'None'}) Maximum latitude. Valid range from -90 to 90. - **target_grid** (*string*) Target grid in degrees (e.g. 1x1) can also be the name of one of the datasets to use the grid from that dataset. - scheme ({'linear', 'nearest', 'area_weighted', 'unstructured_nearest'}) Regridding scheme to be used. - **slope** (*float*) Spatial spectral slope (set to 0 to compute from large scales). - nens ({ 'None'}) Number of ensemble members to be calculated. - **nf** ({ 'None'}) Number of subdivisions for downscaling (e.g. 8 will produce output fields with linear resolution increased by a factor 8). - conserv_glob ({ 'true', 'false'}) Conserve precipitation over full domain? • **conserv_smooth** ({ 'true', 'false'}) - Conserve precipitation using convolution (if neither is chosen box conservation is used)? #### Returns - downscaled_data_ensemble_member_1_data (application/x-netcdf) Generated output downscaled_data_ensemble_member_1 data of ESMValTool processing.. - downscaled_data_ensemble_member_2_data (application/x-netcdf) Generated output downscaled_data_ensemble_member_2 data of ESMValTool processing.. - **archive** (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. #### References - ESMValTool - Documentation get_outputs (result, constraints, options, response) ``` class c3s_magic_wps.processes.ShapeSelect Bases: pywps.app.Process.Process ``` shapefile_selection Shapefile selection (v1.0.0) Metric showing selected gridded data within a user defined polygon shapefile and outputting as NetCDF or csv file. The estimated calculation time of this process is 10 seconds for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. - **shape** ({'MotalaStrom', 'Elbe', 'multicatchment', 'testfile', 'Thames'}) **Shape** of the area - weighting_method ({ 'mean_inside', 'representative'}) The preferred weighting method: mean_inside mean of all grid points inside polygon or representative one point inside or close to the polygon is used to represent the complete area. #### Returns - data (application/x-netcdf) Generated NetCDF file with precipitation for the selected area. - xlsx_data (application/vnd.ms-excel) Generated excel file with precipitation for the selected area - archive (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. - ESMValTool - Documentation get_outputs (result, response) ``` class c3s_magic_wps.processes.Teleconnections ``` Bases: pywps.app.Process.Process teleconnections Teleconnection indices (v1.0.0) Diagnostic providing teleconnection indices (Z500 empirical orthogonal functions) The estimated calculation time of this process is 2 minutes for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1979 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2018 in case of rcp experiments. - **ref_model** ({ 'ERA-Interim'}) Choose a reference model like ERA-Interim. - season ({'DJF', 'MAM', 'JJA', 'SON', 'ALL'}) Choose a season like DJF. - teles ({'NAO', 'AO', 'PNA'}) Choose an EOF like NAO. #### Returns - eof1_plot (image/png) Generated EOF1 plot of ESMValTool processing. - eof2_plot (image/png) Generated EOF2 plot of ESMValTool processing. - eof3_plot (image/png) Generated EOF3 plot of ESMValTool processing. - eof4_plot (image/png) Generated EOF4 plot of ESMValTool processing. - data (application/x-netcdf) Generated output data of ESMValTool processing. - **archive** (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. - ESMValTool - Documentation get_outputs (result, subdir, response) ``` class c3s_magic_wps.processes.Toymodel Bases: pywps.app.Process.Process ``` toymodel Toymodel (v1.0.0) The goal of this diagnostic is to simulate single-model ensembles from an observational dataset to investigate the effect of observational uncertainty. The estimated calculation time of this process is 30 seconds for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. - **variable** ({ 'psl', 'tas'}) Select the variable to simulate. - start_longitude ({'None'}) Minimum longitude. Range usually from -180 to 180. - end_longitude ({ 'None'}) Maximum longitude. Range usually from -180 to 180. - start_latitude ({ 'None'}) Minimum latitude. Valid range from -90 to 90. - end_latitude ({ 'None'}) Maximum latitude. Valid range from -90 to 90. - **beta** (float) User defined underdispersion (beta ≥ 0). - number_of_members ({ 'None'}) Number of members to be generated. #### Returns - plot (image/jpeg) Generated synthetic model plt. - model (application/x-netcdf) Generated synthetic model. - archive (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. - ESMValTool - Documentation get_outputs (result, response) class c3s_magic_wps.processes.WeatherRegimes Bases: pywps.app.Process.Process weather_regimes Weather regimes (v1.0.0) Diagnostic providing North-Atlantic Weather Regimes The estimated calculation time of this process is 2 minutes for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({ 'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1979 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2018 in case of rcp experiments. - ref_model ({ 'ERA-Interim'}) Choose a reference model like ERA-Interim. #### Returns - regime1_plot (image/png) Generated Regime1 plot of ESMValTool processing. - regime2_plot (image/png) Generated Regime2 plot of ESMValTool processing. - regime3_plot (image/png) Generated Regime3 plot of ESMValTool processing. - regime4_plot (image/png) Generated Regime4 plot of ESMValTool processing. - data (application/x-netcdf) Generated output data of ESMValTool processing. - archive (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. - ESMValTool - Documentation get_outputs (result, subdir, response) ``` class c3s_magic_wps.processes.ZMNAM Bases: pywps.app.Process.Process ``` **zmnam** Stratosphere-troposphere coupling and annular
modes indices (ZMNAM) (v1.0.0) Metric calculating Stratosphere-troposphere coupling and annular modes indices (ZMNAM). The estimated calculation time of this process is 3 minutes for the default values supplied. #### **Parameters** - model ({ 'None'}) Choose a model - experiment ({ 'None'}) Choose an experiment - ensemble ({'None'}) Choose an ensemble - **start_year** ({ 'None'}) Start year of model data. Valid minimum value is 1850 in case of historical, and 2006 in case of rcp experiments. - end_year ({ 'None'}) End year of model data. Valid maximum value is 2005 in case of historical, and 2100 in case of rcp experiments. #### Returns - **5000pa_mo_reg_plot** (*image/png*) Generated 5000Pa_mo_reg plot of ESMValTool processing. - **25000pa_mo_reg_plot** (*image/png*) Generated 25000Pa_mo_reg plot of ESMValTool processing. - **50000pa_mo_reg_plot** (*image/png*) Generated 50000Pa_mo_reg plot of ESMValTool processing. - 100000pa_mo_reg_plot (image/png) Generated 100000Pa_mo_reg plot of ESMVal-Tool processing. - **5000pa_da_pdf_plot** (*image/png*) Generated 5000Pa_da_pdf plot of ESMValTool processing. - **25000pa_da_pdf_plot** (*image/png*) Generated 25000Pa_da_pdf plot of ESMValTool processing. - **50000pa_da_pdf_plot** (*image/png*) Generated 50000Pa_da_pdf plot of ESMValTool processing. - 100000pa_da_pdf_plot (image/png) Generated 100000Pa_da_pdf plot of ESMVal-Tool processing. - **5000pa_mo_ts_plot** (*image/png*) Generated 5000Pa_mo_ts plot of ESMValTool processing. - **25000pa_mo_ts_plot** (*image/png*) Generated 25000Pa_mo_ts plot of ESMValTool processing. - **50000pa_mo_ts_plot** (*image/png*) Generated 50000Pa_mo_ts plot of ESMValTool processing. - **100000pa_mo_ts_plot** (*image/png*) Generated 100000Pa_mo_ts plot of ESMValTool processing. - regr_map (application/x-netcdf) Generated output data of ESMValTool processing. - **eofs** (application/x-netcdf) Generated output data of ESMValTool processing. - $pc_mo(application/x-netcdf)$ Generated output data of ESMValTool processing. - pc_da (application/x-netcdf) Generated output data of ESMValTool processing. - **archive** (application/zip) The complete output of the ESMValTool processing as an zip archive. - **success** (*string*) True if the metric has been successfully calculated. If false please check the log files - recipe (text/plain) ESMValTool recipe used for processing. - log (text/plain) Log File of ESMValTool processing. - **debug_log** (text/plain) Debug Log File of ESMValTool processing. - ESMValTool - Documentation get_outputs (result, response)